Students constructing and defending evidence-based scientific explanations
STUDENTS CONSTRUCTING AND DEFENDING EVIDENCE-BASED SCIENTIFIC EXPLANATIONS ABSTRACT Constructing scientific explanations is an essential aspect of engaging in scientific inquiry in classrooms (Driver, Newton, & Osborne, 2000; Sandoval, 2003). The IQWST units are designed to teach scientific principles and the scientific practices of constructing and defending explanations, by providing students and teachers with a framework that clearly defines this complex practice. This framework includes the three components of claim, evidence and reasoning. Our study analyzes student work using this instructional framework, in light of the curricular goals we would like students to achieve: 1) make sense of the phenomena under study, 2) articulate that understanding and 3) defend the understanding to one’s peers. Through this analysis, we find that the instructional framework supports students in using evidence to make sense of the phenomenon under study but that the students are not clearly articulating the relationship between the evidence and inferences, in their explanations. We conclude the paper with possible design strategies for supporting students as they use differentiated evidence and inference to defend their explanations. INTRODUCTION
The goal of science is to construct, evaluate, and refine explanatory models (Duschl, 1990). In the
last two decades, two related themes of science education reform have emerged from this focus
on science as explanation. First, reforms call for conceptual understanding and reasoning about
mechanisms to be cast as the goals for science learning (Linn, Songer, & Eylon, 1996; Smith,
1991; Strike & Posner, 1985). Second, scientific inquiry is thought to be core to science learning,
in which students develop and argue for explanations through their own investigations (AAAS,
1990; Blumenfeld et al., 1991; Duschl, 1990; NRC, 1996). In this literature, explanations are
both the goal of the activity and the means to get there – that is, students construct explanations in
order to understand the phenomenon and as a motivation and guide for engaging in the inquiry
process (de Vries, Lund, & Baker, 2002; Driver et al., 2000; Duschl, 2000; Osborne, Erduran, &
Simon, 2004; Sandoval & Reiser, 2004). As each of these authors discuss, constructing
explanations is a complex practice that incorporates many different types of activities. Moreover,
constructing and discussing explanations is hard for students – it requires that they use their
evidence to evaluate and revise their claims, connect their evidence to the relevant scientific
principles and effectively communicate these understandings. Current reform efforts attempt to
characterize the nature of the challenges that students face when constructing and communicating
explanations and to design supports that address these challenges (e.g., Hogan & Corey, 2001;
Jimenenez-Aleixandre, Rodriguez, & Duschl, 2000; Palincsar, Anderson, & David, 1993;
Sandoval & Reiser, 2004; Toth, Suthers, & Lesgold, 2002).
This study is part of the IQWST research and design initiative in which we design, enact and
research middle school science curricula designed to support scientific practices of explanation
and argument as learners engage in project-based investigations (Krajcik & Reiser, 2004; Reiser,
Krajcik, Moje, & Marx, 2003). The IQWST team has currently created two middle school units –
the chemistry unit How can I make new stuff from old stuff (McNeill et al., 2004), and the biology
unit What will Survive (Bruozas et al., 2004). Part of this process was to create an instructional
framework that supports learners in using evidence to construct and defend their scientific
explanations, in both content areas. This framework was designed to support students as they
engage in both the inquiry process of figuring out what is going on and the act of communicating
this understanding. In this paper, we examine whether and in what ways students working with
the IQWST biology unit use the instructional framework in their written explanations, and how
these responses reflect the different aspects of constructing and communicating an explanation.
In this work, we are attempting to understand the different aspects of producing and
communicating a scientific explanation, the challenges that students face when doing so and how
curriculum materials can support this process. UNPACKING THE PRACTICE OF EXPLAINING
Examining the science education research and philosophy of science literature reveals the many
different aspects and meanings of the practice of “explaining.” At the most general level, we can
examine what an explanation is – the product. From this perspective, an explanation is
commonly defined as a causal account of how or why something occurred (e.g., Horwich, 1987).
Science education researchers add to this more general definition by specifying that the causal
accounts must be linked to evidence (Bell & Linn, 2000; Duschl, 2000; Osborne et al., 2004;
Sandoval & Reiser, 2004). Nagel (1979) also focuses on the product of explaining. As well as
emphasizing the importance of evidence, Nagel adds a taxonomy of explanation types – each of
which uses different reasoning patterns to answer the question “why”: deductive, mechanistic,
A second theme that emerges out of this work is a focus on the process of explaining. For
example, De Vries et al. (2002), highlight the sense-making aspects of the practice, stating that
“in order to explain, students have to externalize, but also to clarify, organize and restructure their
knowledge” (p. 68). Similarly, science standards (AAAS, 1990; NRC, 1996) emphasize the
importance of having students use logic and evidence to develop explanations.
Current views of science emphasize the role of a scientific community in the scientific knowledge
building process, in which scientists propose and thereby test their ideas in their community (e.g.,
Duschl, 1990). This perspective on science as knowledge building in a community adds to the
process and product based definitions by suggesting the importance of examining the social
interaction aspects of constructing explanations (Herrenkohl & Guerra, 1998; Hogan & Corey,
2001; Scardamalia & Bereiter, 1994; Tabak & Baumgartner, 2004).
De Vries et al. (2002) provide a useful framework to characterize these various elements of
explanation, and described three potential contexts in which students could explain: First,
students explain an occurrence to themselves – using the explanation as a sense making
opportunity. Second, explanations are a social, communicative practice in which students share
their understandings with one another. Finally, scientific ideas need to be tested in a social
process of discussion and debate. De Vries et al. (2002) used the term “argumentation” to discuss
explanations that are used in this persuasive, disputed context in which individuals are attempting
to convince one another of their explanations.
The IQWST team drew from each of these aspects and definitions of “explanation” to construct
our instructional supports for the practice of constructing and communicating explanations
(Bruozas et al., 2004; McNeill et al., 2004). The IQWST materials are designed to support three
related curricular goals encompassed in the single practice of constructing and defending
scientific explanations: (1) using evidence and general science concepts to make sense of thespecific phenomena being studied (2) articulating these understandings in terms of the evidence
gathered and relevant scientific ideas and (3) defending these understandings by explicitly
connecting the specific evidence and general principles about the relevant scientific concepts to
the knowledge claims. While each of these curricular goals are related, it is important to
recognize their individual importance.
First, students must make sense of the phenomena they study and experience. For example, in the
IQWST biology unit, students are asked to use population and trait variation data to explain why
some birds survived a drought while others did not. Doing this in a way that is consistent with
scientific inquiry requires that students connect the scientific ideas, to which they are being
introduced, with the evidence they have collected, and their prior conceptions and experiences
(Driver et al., 2000; Jimenenez-Aleixandre et al., 2000). This process is a key component of
students developing a deep-content understanding, rather than a more surface memorization of
The second sense of “explain” seen in the literature is to articulate one’s understandings about
what or why an event occurred. That is, students must put their understandings into a coherent
expression in discourse. Lemke (1990) argues for the importance of this focus on communication,
concluding that one understands something only when they understand the ways in which the idea
can be communicated. Other science education research agrees with this focus on
communication — it is through communication that students have opportunities to identify the
strengths and weaknesses of their understandings (Bell & Linn, 2000; de Vries et al., 2002;
Sandoval, 2003; Scardamalia & Bereiter, 1994). Thus, this second goal of communicating one’s
understandings through scientific explanations is one step in the development of community-
supported reflection on the students’ developing understandings.
Finally, moving beyond an articulation of understandings, students should engage in persuasive
discourse, defending their explanations. Scientific inquiry is fundamentally a knowledge building
process in which explanations are presented to the community so they can be critiqued, debated
and revised. Thus, in order to engage in similar scientific knowledge-building practices, students
must participate in the collaborative, persuasive discourse of consensus-building. This persuasive
discourse goes beyond communicating explanations, engaging students in arguing for them,
receiving critiques, and revising their ideas (Carey & Smith, 1993; Driver et al., 2000; Duschl,
1990, 2000). Moreover, argumentation or persuasion has been seen to foster student engagement
with the learning process and therefore engagement with the content under study. For example,
Orsolini and Pontecorvo (1992) found that disagreement, as fostered through a persuasive
discourse, motivated their students (in this case kindergartners) to be more explicit and articulate
about their thinking. Similarly, D. Kuhn and Udell (2003) found that engaging in argumentative
discourse strengthened the quality of the students’ (in this case, inner-city 8th graders) articulation
Clearly, this final goal of defending is an extension of the goal that students articulate their
understandings. That is, defending an understanding is one way that one could articulate it.
However, these goals are not equivalent. One can imagine a student communicating an
understandable and plausible explanation without addressing this third goal of persuasion.
Attending to the defense of their understandings, means that students will articulate why the
reader should believe the explanation, given the evidence.
As stated, these seem like three separate goals, but they are intimately connected. To put it
simply, what does it mean to understand an event if one cannot explain it (Lemke, 1990)? Thus,
the instructional supports were designed to engage students in all three of these goals
simultaneously. While one clearly can’t articulate or defend an understanding until one has madesense of the phenomena, the IQWST design is intended to influence the students’ sense making
process (goal number 1) by providing a structure for their articulation and defense. Thus, rather
than viewing these goals as sequential, they should be considered mutually supportive aspects of
the single practice of constructing and defending an explanation.
Given these goals of sense-making, articulating and defending, there exists an added layer of
complexity to what the students must learn. That is, beyond understanding the scientific theories
and their application, students must now think about communication; students must learn how to
effectively articulate and defend their understandings. Thus, the IQWST materials are designed to
include pedagogical supports that enable students to address each of these goals. IQWST INSTRUCTIONAL FRAMEWORK
Duschl (2000) argues for the importance of making the nature of science explicit to students by
providing them with opportunities to experience the relationship between evidence and theories1.
He and other authors maintain that it is necessary for students to understand that scientific
theories are constructed by a careful examination of the available data in light of the pervading
scientific ideas (e.g., Driver et al., 2000). In this vein, Toth et al. (2002) designed and researched
the Belvedere software to help students distinguish between their hypotheses and the evidence
that supports them. When working in this environment, students record and connect the evidence
they collect with the hypotheses they generate. Distinguishing between and connecting
1 Note that researchers have differed in their focus on “theory,” “hypothesis,” or “explanation.”While there are important differences in these constructs, for our purposes they all share a focuson ideas that learners have constructed, in contrast to empirical evidence. Thus, although wefocus on explanation in the present work, research findings that describe challenges for learnersin distinguishing theory and evidence or hypothesis and evidence are directly comparable to ourcontrast between assertions or claims in an explanation and the evidence that can support orrefute them.
information that fulfills these epistemic categories is one way of making the nature of science
Similarly, Sandoval and Reiser (2004) designed curricula and software to make clear the elements
of the nature of science for students. These authors focused on “epistemological commitments”
or “beliefs about what counts as valued and warranted scientific knowledge” (p. 347-348). With
this focus, Sandoval and Reiser were also highlighting the relationship between explanations and
evidence by designing supports to help students learn the ways in which scientific knowledge is
constructed and defended. That is, their software engages students in an explanation construction
process in which the students are prompted to use existing scientific ideas to guide the selection
and evaluation of data. This software focuses students on what to communicate when explaining
a phenomenon in terms of natural selection by providing students with guiding questions that
break the explanation down into the necessary elements. Palinscar et al. (1993) implemented
similar supports for sixth graders as the students explained the process of dissolving sugar in
water. In this design study, the researchers provided students with three questions highlighting
the pieces of information that a scientific explanation about kinetic molecular theory must
provide (e.g. identifying the substances being studied).
Each of the design approaches presented by Sandoval and Reiser (2004), Palinscar et al. (1993)
and Toth et al. (2002) address Duschl’s (2000) concern that students must explicitly learn the
relationship between evidence and knowledge claims such as theories and explanations. That is,
each of the above approaches creates supports that engage students in the use of evidence and
theory in order to make these epistemic categories explicit. There are some differences between
these approaches: 1) Toth et al. (2002) use content general prompts and the others use prompts
specific to the topic at hand and 2) Sandoval and Reiser (2004) and Toth et al. (2002) focused on
software supports while Palinscar et al. (1993) attempted to affect classroom discourse patterns.
However, even with their differences, each of these designs share a common design principle of
making the epistemic categories of theory and evidence explicit in the students’ work, in order to
influence the students’ inquiry process.
IQWST designed and tested an instructional framework represented in two project-based units,
that builds on these design approaches (Bruozas et al., 2004; McNeill et al., 2004). First, as with
Sandoval and Reiser (2004) and Palinscar et al. (1993), the IQWST instructional framework
makes explicit the practice of “explaining,” supporting the students as they communicate their
product. However, unlike these approaches, the IQWST framework is designed to be general,
rather than to address the specific questions that the students are answering. Further, as seen the
designs presented above, there exists an important distinction between knowledge claims and
their justifications (Duschl, 2000; Toth et al., 2002). The IQWST framework also highlights
epistemic categories by breaking the practice of constructing and communicating an explanation
down into its essential elements. In the IQWST case, in order to address each of the curricular
goals defined above, the framework highlights scientists’ use of evidence and justifications when
constructing and defending claims. In order to do this, the IQWST design team drew on
Toulmin’s argumentation model (1958) to create an instructional framework that makes explicit
the importance of evidence and justification. This model contains three components:
• Claim: what or why something happened• Evidence: information or data that supports the claim• Reasoning: a justification that shows why the data count as evidence to support the claim
The IQWST team chose to highlight justification as well as evidence in order to help direct
students’ attention to the goal of persuasion. In addition, these content general categories were
chosen over question specific prompts for two reasons. First, much like the design approaches
discussed above, highlighting these types of information helps make the epistemic commitments
of scientists more apparent to the students. For example, in order to communicate the importance
of evidence, the instructional framework highlights the general requirement that an explanation
must contain evidence for its claims. Second, the IQWST framework is the result of balancing
the design goals of introducing students to the complex practice of developing and defending
explanations while creating a pedagogical tool that is both useful and flexible enough to cover a
The IQWST units introduce and define these components, support whole class discussions around
them and provide scaffolds in the written materials, highlighting any discipline differences that
emerge. The general definitions of each of these components remain consistent across the units.
In the following, we provide the general definitions and rationale for each component.
CLAIM: The claim answers what or why something happened; it is an assertion or testable
statement about the phenomenon under study. In the pilot tests of this framework it became clear
that the claim is the easiest component for students to construct in their own writing and to
identify in the writing of others (McNeill et al., 2003). Depending on the question asked, the
claim could be a description of what happened or an identification of the critical causal factor.
For example, in lesson 7 of the What will Survive unit students are asked to explain what
happened to the chub population when the sea lamprey was introduced. In contrast, in lesson 13,
students are asked to identify the critical characteristic that enabled some finches to survive a
drought. In both of these cases, students must identify patterns in the available data in order to
EVIDENCE: Science is an empirical endeavor. As stated by Driver et al. (2000), “Scientists hold
a central core commitment to evidence as the ultimate arbiter between competing theories” (p.
297). Thus, the IQWST instructional framework includes an evidence component, defining it as
the scientific data that students gather and combine in order to construct and defend their claims.
As designed, evidence could take a number of forms from traditional numerical data (e.g. changes
in population sizes) to background information (e.g. the Tribulus seeds are harder than Portulaca
seeds) to observations (e.g. sea lamprey have millions of eggs, as seen in a dissection) to facts
that were revealed in readings and discussions (e.g. the sea lamprey eats the trout). In order to
fulfill the evidence component students must identify the relevant evidence, as it is distinct from
their reasoning and claims. Therefore this component is a step towards making the relationship
between evidence and theory explicit to students.
REASONING: A key challenge to designers of inquiry curricula is to design supports that promote
reflection instead of simply “doing” the activity (Barron et al., 1998; Jimenenez-Aleixandre et al.,
2000). Further, early uses of the IQWST instructional framework revealed that students would
provide claims and state evidence but not articulate why the evidence was important or relevant
(McNeill et al. 2003). Given these challenges and working with the belief that stating the
scientific principles used when reasoning through a problem would foster “deep understanding”
(Barron et al., 1998; Windschitl, 2001), “reasoning” became the third component of the
instructional framework. In the curriculum, reasoning is defined as “the scientific background
knowledge or scientific theory that justifies making the claim and choosing the appropriate
evidence” (Bruozas et al., 2004; McNeill et al., 2004). This element makes apparent the
disciplinary expectation that the claim be connected to the evidence. As with each of the
components, the reasoning is intended to provide students with an opportunity to articulate their
understandings, thereby revealing any logical disconnects.
It is important to note the interconnectedness of these components. For example, refining the
reasoning could require a student to revisit the evidence they selected and the conclusion or claim
they are making. Moreover, after constructing a claim and stating supportive evidence, it is
possible that students would need to refine their understanding of the general science concepts
under study in order to articulate the appropriate principle. Thus, this model is designed to do
more than impose a structure on the students’ product: by requiring that students ensure that each
component is included and connected to the others, this framework is designed to support the
students’ process of constructing explanations.
Using this framework as a guide, students construct explanations, engage in activities that make
apparent the three components and discuss how to fulfill the components in various contexts.
Through these activities and discussions, the IQWST framework highlights the necessity that
students consider both the specific evidence and the general science concepts under study when
making sense of their experiences. In addition, the framework provides a structure for the
product that helps students articulate their explanations, and makes explicit the types of
information that one must use when defending a claim. Thus, similar to the design approaches
discussed above, the instructional framework structures how students articulate and defend their
explanations, in order to influence their sense-making process.
Constructing and defending explanations is hard for students and adults, alike. D. Kuhn, Black,
Keselman and Kaplan (2000) conclude that students have a difficult time coordinating their
evidence and their claims, and that students often maintained their hypotheses in the face of
disconfirming evidence. Similarly, in early versions of IQWST, students provided claims and
causal accounts without connecting them to evidence or general principles. Initial studies into
the effectiveness of the IQWST framework find that the framework does support students in
stating supportive evidence and reasoning in the IQWST chemistry unit (McNeill et al., 2003;
In the current study, we explore the ways in which the framework supports students in achieving
the three goals of sense-making, articulating and defending while explaining biological
phenomena. Through this exploration, we attempt to uncover the aspects of the three goals that
the students fulfill. To do this, we examine how students’ responses reflect the instructional
framework, looking at whether and how these answers achieve these three goals. We begin by
providing more specifics about the What will Survive unit, and then move into our analyses. CURRICULUM
The IQWST project designs project-based units in which the scientific ideas are contextualized in
driving questions that the students investigate throughout the unit (Blumenfeld et al., 1991;
Edelson, 2001; Singer, Marx, Krajcik, & Chambers, 2000). The driving question supports the
students in engaging in longer-term investigations; a single driving question can sustain a 4–8
week unit with sub-questions that are used for activities that last from 1-day to two weeks.
Through these investigations, students are asked to apply scientific concepts in order to
understand the data they are examining. For example, students use ideas about predator/prey
relationships and competition to determine how the sea lamprey (an invasive species) affected the
native fish populations in the Great Lakes. Given this pedagogical strategy, in the IQWST units,
explanations that bridge the specific problem context and the general science concepts are a key
aspect of helping students generalize their experiences.
This current study examines student work from the IQWST What will Survive unit (Bruozas et
al., 2004). This eight-week unit is broken into two parts. In part 1, students are asked to
construct plans to remove the sea lamprey, an invasive species, from the Great Lakes. In order to
construct this plan, students investigate the concepts around the interconnectivity of food webs,
the relationship between structure and function (e.g. the kind of beak a bird has affects the kind of
food it can eat and hence, where it can live) and competition. In part 2, the students are asked to
examine what causes populations to change over time, focusing on how some finches were able
to differentially survive a drought. During this month, the students examine ideas around natural
variation in traits and differential survival.
The What will Survive unit (Bruozas et al., 2004) focuses on the practice of constructing and
defending explanations by introducing the practice, defining the three components and providing
the students and teacher with eight opportunities to construct and discuss explanations. This
study focuses on three of those opportunities that represent a range of types of scientific
• Lesson 6: in this lesson, students explore a computer simulation of a simplified food web
of grass, rabbits and foxes constructed using NetLogo (Wilensky, 1999). Once they have
become familiar with the interactions between these three organisms, students add an
“unknown invader.” The lesson concludes with pairs of students constructing a scientific
explanation about where the invader fits in the food web, identifying the organism with
which the invader competes for food. The evidence for this explanation comes from
graphs of population fluctuations, created by the computer simulation.
• Lesson 7: in this lesson, students work with paper graphs, similar to those produced by
the computer simulation in the previous lesson. These graphs depict population
fluctuations in the Great Lakes, before and after the sea lamprey was introduced.
Individual students use these graphs to construct a scientific explanation describing “the
change in population of the chub, after the sea lamprey invaded.” We envisioned that the
students’ evidence would be drawn from the food web image they had received (e.g. “the
food web shows that the trout eats the chub”), and the graphs showing changes in the
populations before and after the sea lamprey was introduced.
• Lesson 13: Lesson 13 includes a two-week project in which the students investigate the
Galapagos Finches population database holding information about the finch population
on the Galapagos Islands (Reiser et al., 2001; Tabak, 2004). Students are asked to work
in pairs in order to interpret the computer data and determine why so many finches died
during the dry season of 1977, and why some were able to survive. The scientifically
supported explanations for this question use data to identify which trait variations enabled
birds to differentially survive the drought. For example, one response could state that the
birds that survived the drought had longer beaks, enabling them to crack the harder seeds
that also survived the drought. Another plausible argument consistent with the data (but
less accurate scientifically) could be that the birds that weighed more had fat stores,
making them better able to survive the food shortage that resulted from the drought.
We selected these three lessons because they represent the range of evidence available and the
types of claims that students construct throughout the unit. These lessons make available a
number of different data sources: from the background information provided by food webs to
population graphs to a collection of data that students must shift through in order to discover the
most relevant pieces. Further, in these three questions we see two different types of claims: in
lesson 6 are students asked to identify a competitor while in lessons 7 and 13 they construct a
causal account describing why the phenomenon occurred. We expected that this diversity would
create opportunities for students to use the instructional framework differently, thereby exposing
us to broader uses of the framework.
In this study, we examined three classes as they implemented the What will Survive curriculum.
For each of these classes, we collected daily videotapes, pre/post tests, pre/post interviews of a
subset of the students and all written artifacts. Through this data collection, the researchers
maintained an observer stance, occasionally stepping into a participant role in order to conduct
spontaneous interviews as students worked through the lessons, or to help the teacher respond to a
For this paper, we examine the students’ written explanations. These are typically 3–5 sentence
paragraphs that respond to a prompt for an explanation. For example, in lesson 6 students are
asked to construct an explanation “explaining which organism the invasive species competes
with.” The students write about half of these explanations individually, the other half are written
in pairs or small groups. In the lessons on which we focus for this paper, the students write
individual explanations in lesson 7 and work in pairs for lessons 6 and 13.
The classes selected for this paper provide a diverse participant pool, thereby making it more
likely that their responses would reflect a range of potential uses of the instructional framework.
There are a total of a total of 53 students represented in this study: 16 from classroom one, 20
from classroom two, and 17 from classroom three (for a total of 28 females and 25 males).
Classroom 1: Classroom one was in a suburban middle school, outside of a large Midwestern
city. While the curriculum supports the introduction of scientific explanations in lesson 3, this
teacher (Teacher 1) introduced scientific explanations in a six-minute discussion, during lesson 5.
She used this opportunity to identify the components claim, evidence and reasoning, in the
instructional framework. The class defined and discussed the importance of each piece. In the
middle of this discussion Ms M. reviewed these components:
A claim is just a simple little statement. Evidence is just what it is, it is justevidence, it is just some numbers or something to support it. And the last part,the reasoning is where you take it a step further, and you say: ‘ok, now that I’veshown you that this is true here is the next logical step’, so that is the hardest partto write (classroom observations, 01.14.04).
Classroom 2: Classroom two is in the same suburb as classroom one, but is in a K-8 magnet
school. Teacher 2 introduced scientific explanations in lesson 3 by connecting them to lab reports
with which the students were familiar. Using this analogy, the teacher associated the claim with
the “conclusion,” and the evidence with the “data summary.” She informed the students that the
reasoning didn’t fit neatly into one of the sections of a lab report, but that the students had done it
before. Teacher two defined reasoning as a statement of “why you think it worked that way”
(classroom, observations, 03.02.04).
Classroom 3: Classroom three was in a grade 7–12 school in a large Midwestern city. This class
started the What will Survive unit immediately after completing the IQWST chemistry unit HowCan I Make New Stuff from Old. As a result, these students came into the unit with some
familiarity with scientific explanations and the components in our instructional framework.
Consequently, we do not have any data regarding how the teacher introduced these components.
This class is also anomalous in that they started What will Survive towards the end of the school
year and they only worked through part 1. This class will be doing the second half of this unit in
April of 2005. In addition, this classroom was a pilot test of additional materials to integrate
explicit classroom discussions around the nature of science. These discussions covered topics
such as the importance of using empirical evidence and logical reasoning, the difference between
observation and inference, and that science is based on interpretation (Kenyon & Reiser, 2005). ANALYSIS APPROACH
In this study, we attempt to characterize the ways in which students fulfill the three curricular
goals of sense making, articulating and defending their understandings, as revealed through their
written explanations. To do this, we engaged in an iterative, inductive analysis of a total of 92
written responses to three questions, looking for patterns in how the students fulfilled each of the
Throughout this, our coding scheme emerged out of the students’ work. In the first pass through
this data, we simply attempted to identify the three components of claim, evidence and reasoning,
in each response. We quickly discovered that even this level of coding was difficult; we were
often unable to tease apart these three components in a single response. This finding alerted us to
the fact that the students were not making the elements of the framework explicit and drove us to
understand whether and how the students were using the framework and how these different uses
appeared to satisfy our three curricular goals. To that end, we began an iterative analysis of these
“odd” cases attempting to determine ways of characterizing how these explanations differed from
As described, our analysis focuses on how the instructional framework appears to influence
students’ fulfillment of the three curricular goals. Given this focus, we are not assessing the
accuracy of the students’ responses. We found that the scientific accuracy was not a challenge for
students: all 92 responses in the data corpus correctly use the relevant science ideas (12 of those
responses appear to have partial understandings). Further, as will be demonstrated in the first
example below, it is often difficult to discretely identify each component of the instructional
framework. Thus, we do not explicitly examine whether each of the three components are
In the following sections, we begin by closely examining two explanations that represent the two
general types of responses that students constructed. We then move on to identify the structural
characteristics that were often present in these different types of responses and connect these
specific examples to the more general data corpus of 92 responses. Throughout this analysis, we
examine the students’ use of language to understand how they applied the instructional
framework and satisfied the curricular goals. EXAMPLE EXPLANATIONS
Both of our sample explanations come from students in class 1 as they address the culminating
question in lesson 13. As mentioned above, throughout this investigation, students are tasked
with discovering why some finches were able to survive a drought. The students then construct a
scientific explanation about what happened. We selected responses from lesson 13 because it is
the most complex explanation the students construct – it consequently resulted in the most
interesting analyses. We chose these two specific responses because they reveal similar
understandings of the phenomenon, but communicate it in strikingly different ways. We found
these answers to be prototypical of the two different types of responses the students constructed.
The following example represents a typical response. Although this response is coherent and
seems sound, the students are not making clear to readers which parts of their explanation are
The rainfall decreased a lot which created the plants to not grow as much, so theChamae, Portulaca, and Cactus had softer seeds so birds fought in competitionfor those plants. Since those plants were very scarce there was one other plantcalled the Tribulus, which had harder and lengthier seeds so the best chance for
survival was to adapt2 to the Tribulus and be able to eat the seeds without dying(Classroom 1, Student Group JH, Finch Survival)3.
The students in this response have synthesized the available data in order to construct an
explanation about why so many birds died and some survived. Throughout this explanation, the
students reference the evidence they gathered (e.g. the Chamae, Portulaca and cactus were scarce
and the Tribulus had harder seeds). Further, the implicit and explicit connections in this response
express the students’ reasoning (e.g. the plants not growing caused the birds to compete for the
few seeds that remained). Thus, in some ways, they have accomplished the task – they have used
evidence and reasoning to present a coherent explanation about the phenomenon under study.
However, readers that were unfamiliar with the students’ problem context and the available data
would have a difficult time deciding whether they believed the students’ claim. These unfamiliar
readers would be unable to determine which ideas in the above explanation were new and which
were already understood and accepted before the research. Further, of the new information, the
readers would not know which pieces were the students’ speculations and which were facts. Thus,
while we (as a familiar audience) can tell that this explanation applies the appropriate scientific
principles to understand the available data and tell a coherent story, it is not communicated in a
way that supports a readers’ scientific evaluation.
The second example exemplifies a different approach to communicating the explanation. As with
the students in the first example, these students claim that some birds survived because they ate a
specific plant – the Tribulus. After explaining what happened, these students present the
We believe that the reason some of the finches survived was because they ate theplant that was able to survive without water called Tribulus. The charts ofcactus, Portulaca, and Chamae all show a major decrease to zero, from wet ’73 towet ’77 except for the Tribulus plant. The Tribulus plant decreased quite a lotbut not enough to disappear all the way. It survived after the drought in the dryseason in ’77. The research of four birds that survived showed that they all ateTribulus. Which means that the drought didn’t effect the Tribulus plant, whichdidn’t effect the ground finches that ate it. According to the information wefound, our hypothesis is correct. They both said that the Tribulus was the bestsurviving plant of the drought in ’77, which didn’t effect those who ate it(Classroom 1, Student Group QT, Finch Survival).
2 These students are clearly not using “adapt” in the strictly scientific sense. Based onconversations with these and other students, we believe that students JH are saying that the birdschanged what they ate, not that their physical characteristics were changed. 3 Throughout the student quotes we corrected the spelling of the plant names (for clarity to ouraudience) but left the rest of the student grammar and spelling as it was written.
Unlike the first example response, these students appear to use the instructional framework
provided in the unit to structure their explanation of the finch phenomenon. That is, it appears
that the first sentence fulfills the claim component, the following three sentences provide
evidence and the final three sentences are the students’ reasoning. Thus, as a reader, it is easier to
determine what information is new (the claim), which aspects of the response come from data
(the evidence), and which are the students’ inferences (the reasoning).
When considering the students’ task, both of these responses makes sense; students were asked to
construct a scientific explanation about why so many birds died, but some survived. Both student
groups accomplished this: they both used evidence to explain the differential survival of some
finches. However, the instructional framework is designed to do more than support the students
in making sense of a phenomenon. It should structure the way that students communicate and
defend their understandings, as well. These examples reveal different degrees of clarity in the
students’ responses, raising a number of questions. Is it important for students to follow the
instructional framework? Are the students that do not explicitly state the claim, evidence and
reasoning components achieving our pedagogical goals of articulating and defending their
understanding? What are the necessary elements of these components? For example, does the
evidence need to be carefully distinguished from the other components?
In order to understand the ways in which students construct and communicate their explanations,
we attempted to identify patterns across the various student responses. Motivated by the contrasts
in the two examples above, we examined the corpus to identify the general dimensions that
characterized how students differed in their explanations, so that we can consider the obstacles
they may have encountered that led to this variation in their practice. Through this process, we
identified two general structural characteristics that can be used to characterize the differences in
clarity in communicating explanations, as evidence in the above examples: 1) the degree to which
the inferences and evidence are differentiated and 2) the use of persuasive statements. In the
following sections we extend our analysis of these two example explanations to describe these
characteristics, and exploring the representativeness of these contrasts through additional
examples and numerical data from the entire corpus. DIFFERENTIATING BETWEEN INFERENCES AND EVIDENCE
As described in the science education research literature, the distinction between inference and
evidence is key throughout the inquiry process (e.g., Driver et al., 2000; Duschl, 2000). From a
learning perspective, understanding this distinction enables students to identify which aspects of
their explanations need additional support – which additional questions to pursue. From a
communicative perspective, clearly differentiating between evidence and inference enables
readers to scientifically evaluate the merit of the students’ claims. The instructional framework
attempts to support students in making this distinction by including the evidence component as an
explicit and necessary element of explanations.
As defined, the evidence component should contain the facts that students gathered through
observation, discussion, reading and experimentation that bears on the knowledge claims. When
making sense of the phenomena under study, students are expected to use the facts to figure out
what was happening; to determine the claim they want to make or to evaluate a competing claim.
For example, in the finch problem that these students address, the students examine a range of
data including field notes about finch behaviors, charts of seed counts and graphs showing the
survival rates of birds with different characteristics. The students combine all of this data to
construct their understandings of the finch phenomenon. When articulating their understandings,
students use the evidence to defend these claims: to state the evidence that supports their claims.
As demonstrated in the two examples, not all students explicitly fulfilled the evidence
The students in the first example have embedded their evidence with their suppositions. As a
result of this rhetorical structure, it is difficult for the audience to determine which information is
fact and which information is the result of inferences the students made. For example, examine
the following sentence in which we italicized the facts that are available in the computer
database: “Since those plants [Chamae, Portulaca and cactus] were very scarce, there was oneother plant called the Tribulus, which had harder and lengthier seeds so the best chance for
survival was to adapt to the Tribulus and be able to eat the seeds….” Without being familiar with
the students’ problem context (including the instructional sequence and computer supports), it is
difficult to make the distinction elucidated by the italics. This raises questions such as how do the
students know that the surviving birds ate Tribulus? Thus, these students have provided little
guidance to support the reader in determining what is fact and what is inference thereby making it
difficult for the reader to evaluate whether the claim is accurate and believable.
This structure also hides the evidence and inference distinction from other students in the same
classroom. That is, this problem context is rich enough for students to pursue different paths
through the data and to construct different interpretations of the complex data set. Thus, it is
entirely probable that each student group will look at slightly different data sets, making them
“unfamiliar readers” of each others’ work. Thus, when discussing explanations such as the one in
example 1, students may not be able to tell what data the authors are referencing (if any) when
they write assertions that move ambiguously between evidence and inferences. This makes it
difficult for the students to engage in a discourse in which they evaluate their claims in light of
The problem of embedding evidence and inference was widespread in these written explanations.
This embedding of evidence and inference happened in about 45% of the 92 responses we
The majority of the second example provides clearly distinguished evidence and inferences. For
example, the sentence “The charts of cactus, Portulaca, and Chamae all show a major decrease to
zero, from wet ’73 to wet ’77 except for the Tribulus plant.” labels the data source thereby
helping to identify the information as fact.
It is important to recognize the continuous nature of this dimension. For example, even the
second response that contains clearly identifiable evidence and inferences also contains data that
is embedded with the inferences (we have italicized the clauses that reference facts available to
the students in the database): “We believe that the reason some of the finches survived was
because they ate the plant that was able to survive without water called Tribulus.” As shown by
the italics, these students have embedded implicit references to data throughout their claim –
much as the students in example 1 do.
Even with the continuous nature of the embedded/differentiated distinction, we found it to be an
important and powerful way of characterizing the student responses. In cases such as the second
example, we determined how to code it by examining the entire explanation. In this case,
regardless of how we characterize the claim, the evidence and suppositions are differentiated
throughout the rest of the response. In this example, we see the two structural characteristics that
students most often used to differentiate between the evidence and inferences: they provide data
that is close to its original form and they reference the evidence sources. In the following two
sections we provide additional examples of how students present data and provide citations to
communicate the distinction between their evidence and inferences.
The most explicit way these students distinguish between factual information and supposition is
to cite the data source. In the examples from above, the students explicitly reference their data
sources two ways: 1) Naming the evidence source, such as “The charts of cactus, Portulaca, and
Chamae all show…” 2) Generally referencing the evidence “The research of four birds that
survived showed…” or “the graph shows that…”
In both of these citations, the students have made apparent that the information came from their
research rather than their own inferences. However, these clauses raise a question regarding the
apparent simplicity of looking for citations: when coding the responses, how precise of a citation
are we looking for? In the first citation types, the students tell their reader that they are looking at
charts and they identify the plants on the charts. Knowing the database with which the students
are working enables teachers and researchers to identify exactly what chart the students are
referencing in this sentence. However, in the second, more general, citation it is difficult to
determine the details – which birds have the students examined? At what graph are the students
While the precision of the citation is important for scientists, it is less so in this context in which
the data available to the students is limited, making the source relatively obvious. Moreover,
regardless of the specificity of a reference, the citation itself serves to differentiate between
evidence and inference. Thus, as we examined the corpus of scientific explanations, we looked
for clauses that clearly identified the information as evidence-based, regardless of the level of
precision. Thus far, we have seen five general ways of accomplishing this, that vary in how
precise they are in identifying evidence and in separating it from inferences:
1. Identifying evidence sources with statements such as “The charts…all show…” (from above).
Note that this citation refers specifically to graphs that the students included with their prose.
The clause “I looked on my food web and saw…” also fulfills this citation-type as it refers to
a specific chart in the student’s binder. This was the most explicit type of citation that the
2. Referencing evidence, generally, such as the example from above, in which the students
reference their “research of four birds.” This is an example of a more general reference
because the students are alluding to field notes about birds, but have not identified which of
the over 200 birds they are examining. The statement: “My evidence is that…” is an
additional example of this more general reference type. While these citations do not provide
a lot of confidence regarding the evidence source, they communicate that the students are
3. Bounding their statements by referencing the time or context in which their evidence
occurred. This is a weak data reference, however we find that statements such as “When the
invasive species was put into the environment…” communicate that the observation the
student is referencing did occur. That is, in order to happen at a specific time or context, the
event must have happened, and is therefore not an inference. It is key that this statement is in
past tense; a future tense would indicate that the student was predicting what would happen,
rather than describing what did occur.
4. Attributing confidence in the information presented with statements such as “I know this [the
claim] because…” As with our third category, these statements of confidence are a weak
reference to data. However, statements such as this were often used to rhetorically separate
5. Similarly, some students differentiated between their inferences and evidence by implyingthat the evidence is something they know. Students do this by calling the inference out as
something that is not fact using phrases such as: “I think" or “I believe.” For example,
examine the following response “…There was a nice size number of foxes and invasives [sic]
but the rabbit and grass populations were pretty low. I believe that the rabbits couldn't have
eaten all that grass if they were leaving so quickly” (Classroom 3, Student S, lesson 6) The
first of these sentences provides unreferenced data, but the student has identified the second
sentence as specifically containing an inference; it is what she thinks happened. Thus, while
the student has not referenced her data source she has differentiated between the evidence and
inference by highlighting the inference as something different from the evidence. This
student is claiming confidence in her evidence by implying that it is something she knows,
As seen, each of these characteristics offers different levels of specificity. For example, type 1,
identifying the evidence source, enables the readers to find the graph and check the students’
interpretations for themselves while the last types merely identify the clause as being fact-based.
That said, regardless of their specificity, each of these different ways of referencing data sources
help readers differentiate between the parts of the students’ explanation that are evidence and
those that are inferences. In the following section, we consider the second way in which students
make clear the distinction between their evidence and inferences.
Presenting data in a form that is similar to that of the original data source is the second way in
which these students distinguish between their evidence and inferences. In the first example from
above, the students report that most of the seeds are “very scarce” and that the Tribulus seeds are
“harder and lengthier.” In this response, the reader is not given an opportunity to determine that
most of the plant seeds are “very scarce,” instead the reader must trust the students’ interpretation
of the situation. Moreover, the structure of this sentence implies that the Tribulus seeds are not
“very scarce,” but the students have not explicitly provided that information. Rather than
describing the data in a form similar to that of the raw data (e.g. numbers), these students have
stated data that is stated as though it were an inference virtually hiding the fact that the students
were working with data at all. As seen, this presentation provides the audience with an
incomplete understanding of the information available and makes the reader unable to distinguish
between the pieces of the explanation that are factual and which are supposition.
The second example, on the other hand, provides a description of the data that is closer to the
original, thereby allowing the readers to determine what the information means. For example, in
the sentences: “The charts of cactus, Portulaca, and Chamae all show a major decrease to 0, from
wet ’73 to wet ’77 except for the Tribulus plant. The Tribulus plant decreased quite a lot but not
enough to disappear all the way,” the readers have access to all of the information used in the
comparison. Thus, in this example, the reader has a sense of how much the Tribulus seed count
differed from the others (e.g. “it decreased, but not all the way to 0”).
As with the other structural characteristics we’ve identified, the data presentation is a continuous
variable. The following two examples demonstrate the ends of this continuum, as seen in student
responses. For both of these examples, the students are working with a computer model of a
simple ecosystem that contains foxes, rabbits, grass and an unknown invader. The students use
graphs of the population fluctuations to determine which of the other organisms the unknown
In response to this question, student EJ states:
…This invasive species eats grass effecting [sic] the grass and the rabbits in abad way but the foxes in a good way. The rabbits have to compete for grass andfoxes have more food” (Classroom 1, Student EJ, lesson 6).
In the italicized segment, the student refers to the available data – the grass and rabbit population
decreased while the fox population increased. However, by saying that the grass and rabbits have
been affected “in a bad way”, this student has made it difficult for the reader to recognize that he
is even looking at the graphs or talking about population sizes. A reader that was unfamiliar with
the context could easily assume that the student was referring to the rabbits’ quality of life, rather
than the population size. This is an example of a response that presents the information in a form
that bears no relation to the data itself, thereby blurring the distinction between the inferences and
Student EL, on the other hand, differentiates her evidence by describing what is happening on the
The invasive species was competing with the rabbits for grass. When we put the[invasive] species in the environment, the graph shows that the rabbit andinvasive species both went down at about the same time and while they were bothdown, the grass went up. I think the reason for those rises and falls is that boththe rabbits and the invasive species eat grass (Classroom 2, Student EL, lesson6).
In the italicized sentences the student describes changes in the population sizes. While this is an
interpretation (she has not provided the raw numerical data), it is closer to the original data and
allows the readers to construct a relatively clear picture of the relationships in her data set. Thus,
explicitly describing the graph has helped this student to differentiate between her evidence and
As these examples demonstrate, presenting evidence in a form that is similar to that of the data
source helps the reader understand the students’ data and evaluate their claims. When evidence is
presented in a from that seems unrelated to the original data source, such as the evidence seen in
the first example from both the finch and ecosystem lessons, it is difficult for readers to determine
that the information came from student observations or other data source. That is, if presented in
a form that is removed from that of the original data source, the data is often indistinguishable
We found the two characteristics of referencing data sources and presenting data that is close to
its original form to be prevalent throughout our data corpus. Table 1 presents the percentage of
the 92 analyzed responses that reflect the various dimensions for each characteristic that students
used to when constructing their explanations.
Table 1: Frequency of the characteristic dimensions
and Data PresentationReferencing Evidence
Through our analysis, we used these dimensions to help determine whether the students were
embedding their evidence within their inferences or whether the two elements were differentiated.
It is important to note that while evidence citation and describing the raw data helped students
distinguish between their evidence and inferences, these characteristics are only indicative; they
are not diagnostic of the differentiation level. These characteristics are not diagnostic because
they are continuous, rather than discrete, as is the level of differentiation. For example, if a
student uses one of the weaker citation techniques listed above (e.g. time bounding a statement),
they have not necessarily differentiated their evidence completely. Further, while related, these
characteristics did not always go together. For example, a response may contain evidence that is
presented in a form similar to that of the data source (thereby allowing the reader to interpret it),
but not cite the source. Thus, the two characteristics of citing evidence sources and presenting
evidence in a form that is similar to that of the raw data guided our determination of how
differentiated the evidence and inferences were, but we made the final decision based on a
holistic judgment about how identifiable and distinguishable evidence and inferences were in the
explanations. Through this, we found that 45% of the student responses embedded their evidence
in their inferences and 46% clearly differentiated them, while 9% of the responses were middle-
PERSUADING THE READER
In the reasoning component of explanations, students were expected to connect their claim to
their evidence – telling the reader why their evidence supported their claim. While this
component was intended to encourage students to state general scientific concepts, most of our
students fulfilled the requirement by stating a narrative account that linked the evidence and the
claim. For example, in the second response from above the students link their evidence regarding
the Tribulus plant’s survival to the survival of finches that ate it, saying:
Which means that the drought didn’t effect the tribulus plant, which didn’t effectthe ground finches that ate it….the Tribulus was the best surviving plant of thedrought in ’77, which didn’t effect [sic] those who ate it. According to theinformation we found, our hypothesis is correct. They both said that the Tribuluswas the best surviving plant of the drought in ’77, which didn’t effect those whoate it (Classroom 1, Student Group QT, Finch Survival).
While this reasoning does not include a general principle, it does fulfill the instructional goal that
students connect their evidence and claim.
Notice the penultimate sentence in the students’ reasoning: “According to the information we
found, our hypothesis is correct.” We found that about 29% of the responses in our data corpus
included statements such as this, in which the students are overtly attempting to persuade the
reader. These statements are seen as part of the reasoning component because students use them
to make obvious that they are basing their claims in evidence.
O’Neill (2001) calls these “overt persuasion” statements. Students typically provide overtly
1. Asserting the accuracy of the claim, by using phrases such as “this [the evidence above]
proves…” or, as in the example from the finch responses, “…our hypothesis is correct…”
2. Providing a counter argument to strengthen the claim. For example, in the following
example the student states her original hypothesis and then demonstrates why it is incorrect:
“The invasive species is competing for grass with bunnys [sic]. At first my group thought
that the invasive species was competing with foxes, for bunnys. After more generations and
more research, when bunnys die out, the invasive species lives on [so it must not eat
bunnies]…” (Classroom 2, Student EJ, lesson 6). While this example does not provide
evidence supporting the claim, it does attempt to persuade the reader that the alternative is
These persuasive statements are not a requirement of the instructional framework. Students often
use them to help spell out their logic (e.g. “believe me because X follows Y”), but it is entirely
possible to provide the three instructional framework components without using persuasive
sentences. Nor are persuasive clauses necessary for the three curricular goals of sense-making,
articulating and defending. We included this characteristic in our analysis because these clauses
allowed students to say: “believe me for these reasons,” That is, these “overtly persuasive”
statements indicate that students were attending to the third goal of defending their
Table 2, presents the structural characteristics described above, summarizing our analysis of the
examples with which we opened our investigation.
Table 2: Summary of the characteristics in each example explanation
Example 1 Example 2
Examining the entire data corpus demonstrates that this pattern of structural characteristics is not
uncommon. Clearly, we define evidence differentiation in terms of data presentation and the
presence of citations, thus these categories are dependent and have an uninteresting relationship.
However, there is no definitional relationship between differentiating the evidence and using
persuasive statements – persuasive sentences are not seen as one of the ways to differentiate
evidence and inferences. Even so, as table 3 shows, students were much more likely to include
these persuasive statements in responses that differentiated between the evidence and inferences
Table 3: Relationship between differentiation and persuasive statements
No Persuasive Contains Persuasive Statements Statements Embedded Evidence and Inferences Partly Differentiated Evidence Differentiated Evidence
This table tells us that 41% of the responses that differentiate between the evidence and inference
contain persuasive statements while only 17% of the responses with embedded evidence and
inference contain them. This results in a significant relationship (chi-squared test result of p <
0.05) between the two characteristics: students are more likely to use persuasive statements if
they differentiate between their evidence and inferences. DISCUSSION
We began this paper with the general goal of supporting learners in the process of constructing
and defending scientific explanations. Our review of the literature on scientific explanation and
the related idea of scientific argument identified three curricular goals that comprise the related
aspects of this practice: 1) engaging in sense making to construct an explanation; 2) articulating
one's understanding as a explanation, to communicate this understanding to others; and 3)
convincing others of the explanation by defending it with scientific evidence and principles. This
third goal of defending an explanation both makes explicit the epistemic commitments of the
science and can be seen as a motivator for student engagement.
In attempting to support this multi-faceted practice for learners through an instructional
framework, the IQWST design team distilled these ideas into the critical elements of claim,
evidence, and reasoning. In this study, we examined the utility of this framework, investigating
which of the three goals the framework manages to capture and communicate to students, and
ways that the framework may need to be elaborated.
Our analyses focused on two prototypical student explanations. Through this analysis we
identified two general structural characteristics that seemed to characterize the differences
between these responses: 1) the level of differentiation between evidence and inferences and 2)
the use of overtly persuasive clauses. Both of these characteristics relate to the third curricular
goal that students defend their understandings. When discussing these two characteristics, it is
important to note their different levels of instructional value: students should explicitly
differentiate between their evidence and inferences, but the persuasive statements are not a
requirement. While not required, the persuasive statements are important because they overtly
attend to the third goal of defending an understanding. In these clauses the students are saying:
“let me tell you why you should believe me.” Therefore, these clauses make it apparent that the
students are attending to this third goal. Explicitly differentiating between the evidence and
inference also addresses this third goal of defense by supporting the unfamiliar readers as they
evaluate whether the claim is believable.
When considering these examples in light of the three curricular goals, it appears that both
responses fulfill the first two goals. That is, both responses articulate a coherent, cohesive
understanding of why some finches were able to survive the drought. Further, these
understandings are connected to the available evidence and science ideas. Clearly, in order to
articulate this understanding the students had to construct it first, thereby accomplishing our first
goal that students engage in sense making by using the available data to explain the phenomenon
to themselves. Thus, it appears that, as previous research found, highlighting the components of
claim, evidence and reasoning helps the students ground their explanations in evidence and
scientific ideas (McNeill et al., 2003; McNeill & Krajcik, in press).
However, we argue that while the students that wrote example 1 fulfilled the first two goals, they
did not satisfy the final goal of defending their newfound understanding. As seen through the
analysis, example 1 neither supports an unfamiliar reader in distinguishing between the students’
evidence and inferences nor attempts to overtly convince the reader of their claim. Without
making the distinction between evidence and inference explicit, these students have made it
difficult for readers to judge the strength of their evidence. In addition, this weaving together of
the evidence and inferences makes it difficult for the authors themselves to evaluate their claims
in light of alternative theories. Thus, while the students may actually have been clear in the
conversations within their own group, their written products share the confusions that many
learners exhibit of failing to distinguish their treatment of knowledge claims from the evidence
that can support or refute them (Kuhn, D., Amsel, & O'Loughlin, 1988).
The students that produced example 2, on the other hand, have done both of these things: they
have clearly supported the evaluation of their claim by identifying what is fact and what is
supposition and by asserting the accuracy of their claim. Thus, example 2 attends to the third
goal of using evidence and scientific concepts to defend a claim. Given the prevalence of
examples such as those represented by example 1, it appears that the IQWST instructional
framework as enacted, was not completely effective in helping students accomplish our third goal
of defending their understandings.
This analysis reveals a critical way in which some learners' engagement in this practice can depart
from the target practice: they are not consistently attending to the goal of convincing others.
That is, the challenges that students face – their lack of differentiation between evidence and
inference – suggests that while students seemed to use evidence to constrain the explanations they
constructed, they were less careful in articulating and defending that understanding.
This inattention to audience is consistent with the general challenge of bringing inquiry science
into classrooms. Establishing the authenticity of the knowledge building activity is one difficulty
in creating an inquiry community in classrooms (Cornelius & Herrenkohl, 2004; Engle & Conant,
2002; Jimenenez-Aleixandre et al., 2000; Kelly & Chen, 1999; Scardamalia & Bereiter, 1994;
Tabak & Baumgartner, 2004; Tzou & Reiser, 2004). For example, questions are typically
prescribed by teachers rather than emerging from students' interests (Cazden, 1988; Mehan,
1979). As a consequence, the audience for what one learns is typically thought to be the teacher,
who is interested in checking that students have learned, rather than a scientific community that is
genuinely interested in answers to a scientific puzzle. Yet the sense of scientific explanation that
the IQWST team is trying to inculcate requires that students consider how an audience would
understand the explanation: where claims require a chain of reasoning to be plausible and where
the claims and inferences require empirical evidence and connection to scientific principles to be
Thus, while the generic prompts provided by the instructional framework have helped cue
students that they must incorporate evidence into their sense making process, they are not clearly
helping the students to articulate the relationship between their evidence and inferences. Given
that understanding this relationship between evidence and claims is the lynch pin of
understanding how scientific knowledge is constructed – of understanding the nature of science –
future iterations of our instructional framework will work to emphasize the goal that students
engage in persuasive discourse by defending their explanations. Design Implications
This finding leads us to ask: how can the IQWST designs more fully support students in
attending to the epistemic categories of evidence and inference when communicating their
explanations. How can curriculum facilitate the students in defending their explanations?
As currently written, the What will Survive unit appears to under-specify the goal of defending
one’s claim. That is, students are given the framework and asked to use it while “constructing a
scientific explanation,” but the persuasive goal for their writing is not highlighted. This occurs
because the IQWST framework focuses on the cognitive elements of the practice of constructing
and defending scientific explanations. That is, the framework identifies the components that a
good scientific explanation must contain and the types of reasoning in which students should
engage when constructing explanations. Given the challenges students faced with the third goal of
defending their explanations, it may be fruitful to examine the social interactions that support the
types of knowledge building in which we wish students to engage (Tzou & Reiser, 2004). We
hypothesize that engaging in the defense of an explanation requires that students have an audience
– that there is a need for the students to defend their explanations.
Creating an authentic audience may require that classroom activity structures drastically change –
that the teacher no longer be the sole authority on knowledge and that collaboration and
consensus become key elements of the student-to-student interactions. That is, part of what
makes the practice of constructing and defending explanations sensible may be the act of
consensus building, in which scientists engage but in which students rarely have opportunities to
participate. This type of interaction requires a social context in which students expect to learn
from one another’s explanations (Hogan & Corey, 2001) and a problem context in which
competing explanations are possible (de Vries et al., 2002). The problem context for the finch
explanations, on which we focused, is rich enough to satisfy this second goal. However, the
curriculum does not support the teachers in establishing this social expectation that students share
When examining the existing supports, we found two related potential changes that could
influence the ways in which students engage with this practice: 1) the components could be
motivated in terms of how they help to persuade the audience and 2) the students could be given
explicit criteria for choosing between explanations or selecting appropriate evidence. First, our
existing pedagogical supports identify the types of things that a scientific explanation should
contain and facilitates the teacher and students in constructing an understanding of each of these
components. However, this framework has not helped the students to understand why each of
these components is necessary. We anticipate that highlighting the persuasive purpose of each
component would both help to emphasize the necessity of defending a claim and begin to make
the apparent the relationships between these different components.
Second, while our existing supports define the components, they do not provide the students with
criteria to choose between potential ways of fulfilling the components (for example, to choose
between competing claims or to select evidence from the available data). Without this
information, students do not have the information necessary to use the epistemic commitments of
the scientific community to construct a defense of their ideas. Providing this information would
be a step towards empowering students to engage in persuasive discourse about their ideas. NEXT STEPS
Given the potential problems with the existing design, we are exploring three strategies for
helping to motivate the components and to make the criteria more explicit to the students: 1)
empower students to be each other’s audience 2) refine the instructional framework and 3) use
elements from the nature of science literature to explicate the criteria for each component.
EMPOWER STUDENTS TO BE EACH OTHER’S AUDIENCE
In order to make the need that students defend their understandings authentic, we must create a
context and a culture that evokes an audience for the students’ explanations. Without this, we
find that the defense of an explanation is an inauthentic experience that results in students “doing
school” (Jimenenez-Aleixandre et al., 2000) rather than engaging with the process of explaining
the phenomenon. We are currently focusing on student debate and discussion to evoke this
audience. That is, we are designing supports to enable the students become one another’s
audience. This strategy helps to make the classroom interactions more like those of scientists in
which knowledge is constructed through a social process of theory development and revision
(Carey & Smith, 1993; Driver et al., 2000).
In order to motivate each component of the framework (claim, evidence and reasoning) we
attempted to elaborate the existing framework. In this refinement, we added prompting questions
to each element of the instructional framework. We designed these questions to make the purpose
of each component apparent. These questions play the role of scaffolding prompts, extending the
definition of the components to remind learners not only what explanations need to contain, but
what each of these constituents needs to accomplish. These prompts are designed to scaffold
learners, similar to the instructional software prompts that remind learners how to break down
complex activities into component steps (Davis, 2003; Fretz et al., 2002; Quintana et al., 2004).
The three explanation component / prompting question pairs are:
1. What is the answer? (This question aligns with the existing claim component.) To address
this question, students will respond to the prompt in their student books. Thus, students will
make a claim about what they think happened, why it happened, how it happened, etc. For
example, if asked why the rabbits decreased when an invader entered the ecosystem a student
may claim, “the invader eats the grass, the rabbits food.”
2. Why does that make sense scientifically? (This question aligns with the existing ‘reasoning’
component.) To address this question, students must identify things that they know about the
world that make their claim believable, and how their evidence connects, logically, to their
claim. Continuing the example from above, the student may say: “We know that when two
species compete for food, an increase in one species can cause a decrease in its competitors.”
3. How do you know you’re right? (This question aligns with the evidence component of the
instructional framework.) In order to respond to this question, students will supply the
evidence they used when either constructing or testing their claim. For example, the student
from above may say: “Sure— just look at these graphs. Graph 1 shows a decrease in rabbits
Using questions such as these, we intend to motivate the rhetorical importance of each
component. Moreover, these questions will provide students with suggestions as to what they
should ask themselves and one another as they construct, discuss and debate their ideas. Thus,
not only do these questions make explicit that we want students to think about persuading one
another, but they also provide students with a basic toolkit for doing so. These prompts articulate
the basic types of information that an explanation should contain in order for it to be convincing.
USE NATURE OF SCIENCE TO EXPLICATE CRITERIA
In our redesign, fostering a sense of audience requires that students are held accountable to one
another for their claims. Thus, we must do more than highlight the types of information that a
convincing explanation must contain; we must support the students in learning how to choose
between their explanations, critique one another and revise their explanations. To that end, our
final strategy is to unpack each of the three components, making the success criteria of each more
We are using the nature of science understandings about what makes good evidence and how
science knowledge is constructed to identify these criteria. Specifically, we are focused on the
ideas of: specificity of a claim, empirical evidence, reliability, validity and the tentative and
subjective nature of science (Abd-El-Khalick & Lederman, 2000; McComas, Clough &
Almazroa, 1988). These ideas are used to deconstruct the above questions that a convincing
explanation must answer. For example, a claim must be specific enough to answer the question
and the evidence must come from an empirical source (rather than the students’ opinion or
Using these three strategies, combined with an increased focus on student-to-student discussion
around their ideas, we intend to make the third goal of defending explanations more apparent to
students. To that end, we are currently engaged in redesigning What will Survive and pilot-testing
these new strategies. We will analyze these results to examine three related questions:
1. Do these redesign strategies succeed in supporting the students as they work on the three
aspects of explaining including sense making, communicating and defending?
2. Does the act of defending an explanation help students distinguish between the
epistemological categories of evidence and inference?
3. And finally, does the act of defending an explanation foster deeper engagement in the
In this study we have examined students’ written explanations in order to uncover the challenges
they face when making sense of scientific phenomenon and articulating and defending those
understandings. Through this analysis, we have seen students present coherent, evidence-based
explanations. However, about half of these responses fail to distinguish between the evidence
and inferences that were used to justify the claims. These responses reveal students struggling to
effectively defend their growing understandings. We contend that attending to the audience for
the explanations would help students focus on the defense their explanations, thereby motivating
their attention to the differences between evidence and inferences as well as the engaging the
students in the scientific discourse of sense making through persuasion and discussion. ACKNOWLEDGEMENTS
We wish to thank Joe Krajcik, Lisa Kenyon, Kate McNeill, and Bruce Sherin for helpful feedbackon the research presented in this paper. This research was funded by a CCMS doctoral fellowshipawarded to the first author from the Center for Curriculum Materials in Science, funded by theNational Science Foundation under Grant ESI-0227557, and by National Science Foundationgrants ESI-0101780, ESI-0439352, and ESI-0439493 to the IQWST project. The opinionsexpressed herein are those of the author and not necessarily those of the NSF. For additionalinformation about IQWST curricula see http://www.hi-ce.org/iqwst
REFERENCES
Abd-El-Khalick, F., & Lederman, N. G. (2000). Improving science teachers' conceptions of
nature of science: A critical review of the literature. International Journal of ScienceEducation, 22, 665-701.
AAAS. (1990). Science for all Americans: Project 2061. New York: Oxford University Press. Barron, B. J. S., Schwartz, D. L., Vye, N. J., Moore, A., Petrosino, A., Zech, L., & Bransford, J.
D. (1998). Doing with understanding: Lessons from research on problem- and project-based learning. Journal of the Learning Sciences, 7(3-4), 271-311.
Bell, P., & Linn, M. C. (2000). Scientific arguments as learning artifacts: Designing for learning
from the web with KIE. International Journal of Science Education, 22, 797-817.
Blumenfeld, P., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M., & Palincsar, A. (1991).
Motivating project-based learning: Sustaining the doing, supporting the learning. Educational Psychologist, 26, 369-398.
Bruozas, M., Dodick, J., Finn, L.-E., Hug, B., Kuhn, L., Tzou, C., & Reiser, B. J. (2004).
Struggle in natural environments: What will survive? In J. Krajcik & B. J. Reiser (Eds.),IQWST: Investigating and questioning our world through science and technology. Evanston, IL: Northwestern University.
Carey, S., & Smith, C. (1993). On understanding the nature of scientific knowledge. EducationalPsychologist, 28(3), 235-251.
Cazden, C. B. (1988). Classroom discourse: The language of teaching and learning. New
Coleman, E. B. (1998). Using explanatory knowledge during collaborative problem solving in
science. Journal of the Learning Sciences, 7(3-4), 387-427.
Cornelius, L. L., & Herrenkohl, L. R. (2004). Power in the classroom: How the classroom
environment shapes students' relationships with each other and with concepts. Cognitionand Instruction, 22(4), 467-498.
Davis, E. A. (2003). Prompting middle school science students for productive reflection: Generic
and directed prompts. The Journal of the Learning Sciences, 12(1), 91-142.
de Vries, E., Lund, K., & Baker, M. (2002). Computer-mediated epistemic dialogue: explanation
and argumentation as vehicles for understanding scientific notions. Journal of theLearning Sciences, 11, 63–103.
Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation
in classrooms. Science Education, 84, 287–312.
Duschl, R. A. (1990). Restructuring science education: the importance of theories and theirdevelopment. New York, NY: Teachers College Press.
Duschl, R. A. (2000). Making the nature of science explicit. In R. Millar, J. Leach & J. Osborne
(Eds.), Improving science education: The contribution of research (pp. 187-206). Buckingham, UK: Open University Press.
Edelson, D. C. (2001). Learning-for-use: A framework for integrating content and process
learning in the design of inquiry activities. Journal of Research in Science Teaching, 38,355-385.
Engle, R. A., & Conant, F. R. (2002). Guiding principles for fostering productive disciplinary
engagement: Explaining an emergent argument in a community of learners classroom. Cognition and Instruction, 20(4), 399-483.
Fretz, E. B., Wu, H.-K., Zhang, B., Davis, E. A., Krajcik, J. S., & Soloway, E. (2002). An
investigation of software scaffolds supporting modeling practices. Research in ScienceEducation, 32(4), 567-589.
Herrenkohl, L. R., & Guerra, M. R. (1998). Participant structures, scientific discourse, and
student engagement in fourth grade. Cognition and Instruction, 16(4), 431-473.
Hogan, K., & Corey, C. (2001). Viewing Classrooms as Cultural Contexts for Fostering Scientific
Literacy. Anthropology & Education Quarterly, 32(2), 214-243.
Horwich, P. (1987). Asymmetries in time: Problems in the philosophy of science. Cambridge,
Jimenenez-Aleixandre, M. P., Rodriguez, A. B., & Duschl, R. A. (2000). “Doing the lesson” or
“doing science”: Argument in high school genetics. Science Education, 84, 757 –792.
Kelly, G. J., & Chen, C. (1999). The sound of music: constructing science as sociocultural
practices through oral and written discourse. Journal of Research in Science Teaching,36(8), 883-915.
Kenyon, L. & Reiser, B. (2005, April). Students' epistemologies of science and their influence on
inquiry practices. Paper presented at the National Association of Research in ScienceTeaching, Dallas, TX.
Krajcik, J., & Reiser, B. J. (Eds.). (2004). IQWST: Investigating and Questioning our WorldThrough Science and Technology. Ann Arbor, MI: University of Michigan.
Kuhn, D., Amsel, E., & O'Loughlin, M. (1988). The development of scientific thinking skills. San
Kuhn, D., Black, J., Keselman, A., & Kaplan, D. (2000). The development of cognitive skills to
support inquiry learning. Cognition and Instruction, 18(4), 495-523.
Kuhn, D., & Udell, W. (2003). The development of argument skills. Child Development, 74(5),
Lemke, J. L. (1990). Talking science: language, learning, and values. Norwood, N.J.: Ablex. Linn, M. C., Songer, N. B., & Eylon, B. S. (1996). Shifts and convergences in science learning
and instruction. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of EducationalPsychology (pp. 438-490). New York: Macmillan.
McComas, W.F., M.P. Clough, and H. Almazroa. (1998). The role and character of nature of
science. In The Nature of Science in Science Education: Rationales and Strategies, Chap. 1. Dordrecht, The Netherlands: Kluwer Academic Publishers.
McNeill, K. L., Harris, C. J., Heitzman, M., Lizotte, D. J., Sutherland, L. M., & Krajcik, J.
(2004). How can I make new stuff from old stuff. In J. Krajcik & B. J. Reiser (Eds.),IQWST: Investigating and questioning our world through science and technology. AnnArbor, MI: University of Michigan.
McNeill, K.L., & Krajcik, J. (in press). Middle school students' use of appropriate and
inappropriate evidence in writing scientific explanations. In Lovett, M. & Shah, P. (Eds.)Thinking with Data: the Proceedings of the 33rd Carnegie Symposium on Cognition. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
McNeill, K. L., Lizotte, D. J., Harris, C. J., Scott, L. A., Krajcik, J., & Marx, R. (April, 2003). Using backward design to create standards-based middle-school inquiry-orientedchemistry curriculum and assessment materials. Paper presented at the Annual Meetingof the National Association of Research in Science Teaching, Philadelphia, PA.
Mehan, H. (1979). Learning lessons: Social organization in the classroom. Cambridge, MA:
Nagel, E. (1979). The structure of science: Problems in the logic of scientific explanation.
Indianapolis, IN: Hackett Publishing Company.
NRC. (1996). National science education standards. Washington, DC: National Research
O'Neill, D. K. (2001). Knowing when you've brought them in: Scientific genre knowledge and
communities of practice. Journal of the Learning Sciences, 10(3), 223-264.
Orsolini, M., & Pontecorvo, C. (1992). Children's talk in classroom discussions. Cognition and
Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school
science. Journal of Research in Science Teaching, 41(10), 994-1020.
Palincsar, A. S., Anderson, C. W., & David, Y., M. (1993). Pursuing scientific literacy in the
middle grades through collaborative problem solving. Elementary School Journal, 93(5),643-658.
Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., Kyza, E., Edelson,
D. C., & Soloway, E. (2004). A scaffolding design framework for software to supportscience inquiry. The Journal of the Learning Sciences, 13(3), 337-386.
Reiser, B. J., Krajcik, J., Moje, E. B., & Marx, R. (2003). Design strategies for developingscience instructional materials. Paper presented at the Annual Meeting of the NationalAssociation of Research in Science Teaching, Philadelphia, PA.
Reiser, B. J., Tabak, I., Sandoval, W. A., Smith, B. K., Steinmuller, F., & Leone, A. J. (2001).
BGuILE: Strategic and conceptual scaffolds for scientific inquiry in biology classrooms. In S. M. Carver & D. Klahr (Eds.), Cognition and instruction: Twenty-five years ofprogress (pp. 263-305). Mahwah, NJ: Erlbaum.
Sandoval, W. A. (2003). Conceptual and epistemic aspects of students' scientific explanations. Journal of the Learning Sciences, 12(1), 5-51.
Sandoval, W. A., & Reiser, B. J. (2004). Explanation-driven inquiry: Integrating conceptual and
epistemic scaffolds for scientific inquiry. Science Education, 88(3), 345-372.
Scardamalia, M., & Bereiter, C. (1994). Computer support for knowledge-building communities. The Journal of the Learning Sciences, 3(3), 265-283.
Singer, J., Marx, R. W., Krajcik, J., & Chambers, J. C. (2000). Constructing extended inquiry
projects: Curriculum materials for science education reform. Educational Psychologist,35, 165-178.
Smith, E. L. (1991). A conceptual change model of learning science. In S. M. Glynn, R. H. Yeany
& B. K. Britton (Eds.), The psychology of learning science (pp. 43-63). Hillsdale, NJ:Erlbaum.
Strike, K. A., & Posner, G. J. (1985). A conceptual change view of learning and understanding. In
L. H. T. West & A. L. Pines (Eds.), Cognitive structure and conceptual change (pp. 211-231). Orlando, FL: Academic Press.
Tabak, I. (2004). Synergy: A complement to emerging patterns of distributed scaffolding. TheJournal of the Learning Sciences, 13(3), 305–335.
Tabak, I., & Baumgartner, E. (2004). The teacher as partner: Exploring participant structures,
symmetry, and identity work in scaffolding. Cognition and Instruction, 22(4), 393–429.
Toth, E. E., Suthers, D. D., & Lesgold, A. M. (2002). "Mapping to know": The effects of
representational guidance and reflective assessment on scientific inquiry. ScienceEducation, 86(2), 264-286.
Toulmin, S. (1958). The uses of argument. Cambridge, MA: Cambridge University Press. Tzou, C. T., & Reiser, B. J. (2004). Support for discourse practices in inquiry science: Amultidimensional perspective. Paper presented at the Annual Meeting of the NationalAssociation of Research in Science Teaching, Vancouver, BC.
Wilensky, U. (1999). NetLogo [Computer Program]: Center for Connected Learning and
Computer-Based Modeling. Northwestern University, Evanston, IL.
Windschitl, M. (2001). The diffusion and appropriation of ideas in the science classroom:
Developing a taxonomy of events occurring "between" groups of learners. Journal ofResearch in Science Teaching, 38(1), 17-42.
HS140-3 perform mathematical calculations related to medication administration Set-up / Introduction Description Preparation: 1) Gather supplies. 2) Fill each medication bottle with beads. Each bottle needs to have a different color or shape of bead to help differentiate the "medication" when placed in the medicine cup 3) Prepare a physician's medication order to be dispensed and
OLYSIO™ (simeprevir) Receives FDA Approval for Combination Treatment of Chronic Hepatitis C OLYSIO™is the first once-daily protease inhibitor approved for the treatment of chronic hepatitis C in a combination antiviral regimen for adults with compensated liver disease TITUSVILLE, N.J. (November 22, 2013) – Janssen Therapeutics, Division of Janssen Products, LP (Janssen), announced